МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Agay-

УТВЕРЖДАЮ Заведующий кафедрой физической химии д.х.н., доц. О.А.В. Козадеров

30.04.2020

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.02.02 Термодинамика и кинетика адсорбции

- 1. Шифр и наименование направления подготовки / специальности: 04.06.01 Химические науки
- 2. Направленность: 02.00.05 Электрохимия
- 3. Квалификация (степень) выпускника: Исследователь, преподаватель-исследователь
- 4. Форма образования: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: кафедра физической химии
- 6. Составители программы:

Введенский Александр Викторович, доктор химических наук, профессор Бобринская Елена Валерьевна, кандидат химических наук, доцент

- 7. Рекомендована: НМС химического факультета, протокол № 3 от 19.03.2020
- 8. Учебный год: 2023-2024 Семестр: 7

9. Цели и задачи учебной дисциплины:

Опираясь на базовые знания студентов в области физической химии, физики и математики, дать общие представления о термодинамике и кинетике адсорбционных процессов, познакомить с основными закономерностями адсорбции органических и неорганических соединений на электродах, проиллюстрировать влияние адсорбции на основные стадии электродных процессов.

10. Место учебной дисциплины в структуре ООП:

Блок 1. Вариативная часть. Дисциплина по выбору.

Для освоения этой части программы аспирант должен иметь базовые знания фундаментальных разделов физики и химии, (прежде всего физической, неорганической, аналитической, органической, химии высокомолекулярных соединений, химической технологии); уметь применять основные законы химии и физики при обсуждении полученных результатов, в том числе с привлечением информационных баз данных.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

	Компетенция	Планируемые результаты обучения	
Код	Название	планирусмые результаты обучения	
УК-1	_	знать: современные достижения в области	
J IX-1		знать: современные достижения в области термодинамики и кинетики адсорбции	
	критическому анализу и оценке современных	термодинамики и кинетики адсороции	
	оценке современных научных достижений,	уметь: выбирать модельные системы при решении	
	генерированию новых	исследовательских и практических задач в области	
	идей при решении	адсорбционных явлений	
	исследовательских и	адеороционных явлении	
	практических задач, в	владеть навыками критического анализа	
	том числе в	современных достижений в области	
	междисциплинарных	термодинамики и кинетики адсорбции	
	областях	термодиналики и кинетики адеородии	
УК-4	готовность использовать	знать: современные методы и технологии научной	
	современные методы и	коммуникации на государственном и иностранных	
	технологии научной	языках	
	коммуникации на	уметь: использовать современные методы и	
	государственном и	технологии научной коммуникации в научно-	
	иностранном языке	исследовательской деятельности	
	-	владеть навыками использования современных	
		методов и технологий научной коммуникации на	
		государственном и иностранных языках	
ОПК-1	способность	знать: теоретические основы современных методов	
	самостоятельно	исследования адсорбционных явлений	
	осуществлять научно-		
	исследовательскую	уметь: использовать современные методы	
	деятельность в	исследования и информационные технологии в	
	соответствующей	научно-исследовательской деятельности	
	профессиональной		
	области с	владеть навыками интерпретации результатов	
	использованием	физикохимических и электрохимических методов	
	современных методов	исследования адсорбционных явлений	
	исследования и		

	информационно- коммуникационных технологий	
самостоятельно исследований адсорбционных явл осуществлять научно-		знать: современные методы электрохимических исследований адсорбционных явлений уметь: использовать информационные технологии
	деятельность в области электрохимии с	для обработки экспериментальных данных
	использованием современных методов исследования и информационно-	владеть навыками интерпретации экспериментов, направленных на изучение адсорбционных явлений
	коммуникационных технологий	

12. Объем дисциплины в зачетных единицах/час. — 2 / 72.

Форма промежуточной аттестации зачет

13. Виды учебной работы

	Трудоемкость (часы)			
Вид учебной работы	Всего	По семестрам		
-		семестр 7		
индивидуальные занятия	4	4		
самостоятельная работа	68	68		
Форма промежуточной аттестации	зачет			
Итого	72	72		

13.1. Содержание дисциплины

№	Наименование			
п/п	раздела	Содержание раздела дисциплины		
	дисциплины			
1	Адсорбция. Основные понятия. Адсорбция из газовой фазы.	Основные понятия: адсорбция, адсорбат, адсорбент, изотерма адсорбции, степень заполнения поверхности. Термодинамика поверхности жидкости. Поверхностное натяжение растворов. Уравнение Гиббса. Поверхность твердого тела. Поверхность раздела твердое тело — газ. Взаимодействие молекул с поверхностью. Физическая и химическая адсорбция. Термодинамика адсорбции. Связь поверхностного натяжения с адсорбцией. Измерение поверхностного натяжения и методы изучения адсорбции. Изотермы адсорбции Генри и Лэнгмюра. Уравнение БЭТ.		
2		Поверхностная активность органических соединений. Методы		
	Адсорбция из	адсорбционных измерений. Изотермы адсорбции и уравнения		
	раствора на	состояния поверхностного слоя. Изотерма адсорбции Лэнгмюра. Диссоциация и ассоциация молекул адсорбата. Макромодели		
	однородных и			
	неоднородных	поверхностного слоя и влияние электрического поля на		
	поверхностях.	адсорбцию органических молекул. Заместительная адсорбция.		
		Линейная вольтамперометрия с учетом адсорбции продукта или		

		T
		реагента. Адсорбция на неоднородных поверхностях. Изотермы
		Темкина и Фрумкина. Изотермы Фольмера и Фрейндлиха.
		Влияние природы металла на адсорбцию органических
		соединений. Обобщенная изотерма Конуэя-Гилеади. Линейная
		вольтамперометрия с учетом одновременной адсорбции
		продуктов и реагентов. Соадсорбция.
3		Кинетика адсорбции и электродесорбции на однородных
		поверхностях. Методы адсорбционно-кинетических измерений.
		Стационарные заполнения. Кинетические изотермы.
		Кинетические закономерности адсорбции на неоднородных
	Кинетика	поверхностях. Влияние адсорбции на кинетику электродных
	адсорбции	процессов в условиях замедленного массопереноса. Уравнение
		Рогинского-Зельдовича. Кинетика адсорбции с учетом
		обобщенной изотермы. Соадсорбция. Кинетика электродных
4		процессов в условиях замедленной адсорбции
4		Квантово-химический подход к описанию адсорбционных
		систем. Кластерный подход. Проблемы выборы базиса.
	Микроскопичес	Адсорбция гидроксид- и хлорид-ионов из газовой фазы.
		Газофазная адсорбция молекул воды. Учет растворителя в
		континуальном, микроскопическом и континуально-
		микроскопическом приближении. Моделирование заряда
	кие модели	поверхности. Частичный перенос заряда при адсорбции . Расчет
	адсорбции	характеристичных частот колебаний на кластере со свободными
		связими. Методы in situ определения микроскопических
		адсорбционных параметров. Квантово-химический расчет
		адсорбционных характеристик малых органических молекул и
		ионов. Проблемы установления адсорбционной позиции.
L		Jerundenem adechadiem mondim.

13.2. Темы (разделы) дисциплины и виды занятий

№	Изимонования полнана	Виды занятий (часов)			
п/ П	Наименование раздела дисциплины	Индивидуальные занятия		Самостоятельная работа	Всего
1	Адсорбция. Основные понятия. Адсорбция из газовой фазы.	1		12	13
2	Адсорбция из раствора на однородных и неоднородных поверхностях	1		28	29
3	Кинетика адсорбции	1		16	17
4	Микроскопические модели адсорбции	1		12	13
	Итого:	4		68	72

14. Методические указания для обучающихся по освоению дисциплины

Изучение рекомендованной литературы, подготовка к текущим и промежуточным аттестациям, решение практических задач, подготовка сообщений по темам. При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и соцсети.»

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

No	Источник
1	Ролдугин В.И. Физикохимия поверхности / В.И. Ролдугин. – М.: ЦУП Интеллект,
1	2008. – 568 c.
2	Сергеев Г.Б. Нанохимия: учебное пособие / Г.Б. Сергеев. – М.: КДУ, 2007. – 333 с.
2	Дамаскин Б. Б. Электрохимия / Б.Б. Дамаскин, О. А. Петрий, Г. А. Цирлина .— Изд.
3	3-е, испр. — Санкт-Петербург [и др.] : Лань, 2015 .— 670 c.

б) дополнительная литература:

№ п/п	Источник
4	Дамаскин Б.Б. Адсорбция органических соединений на электродах /
4	Б.Б.Дамаскин, О.А.Петрий, В.В.Батраков – М. : Hayкa, 1968. – 334 c.
5	Электродные процессы в растворах органических соединений: учеб. пособие /под
3	ред. Б.Б. Дамаскина – М.: Изд-во Московск. ун-та, 1985. – 312 с.
	Когановский А. М. Адсорбция растворенных веществ / А.М. Когановский, Т.М.
6	Левченко, В.А. Кириченко ; АН УССР, Ин-т коллоидной химии и химии воды .—
	Киев : Наукова думка, 1977 .— 223 с.
7	Полторак О.М. Лекции по теории гетерогенного катализа: учебное пособие /
'	О.М. Полторак. – М.: Высш. шк., 1968. – 256 с.
0	Чоркендорф И. Современный катализ и химическая кинетика / И. Чоркендорф, Х.
8	Наймантсведрайт. – Долгопрудный: Интеллект, 2010. – 504 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник		
9	Научная электронная библиотека — http://www.elibrary.ru		
10	Электронная библиотека Воронежского государственного университета — http://www.lib.vsu.ru		
11	Официальное электронное издание Химического факультета МГУ - http://www.chemnet.ru		
12	Электронный университет ВГУ http://edu.vsu.ru		

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Электродные процессы и адсорбция : [Сборник: В 2 ч.] / Науч. ред. В.Н. Никулин .— Казань : Изд-во Казанского ун-та, 1978 Ч. 2 .— 1978 .— 191 с.
2	Электродные процессы и адсорбция : [Сборник: В 2 ч.] / Науч. ред. В.Н. Никулин .— Казань : Изд-во Казанского ун-та, 1978 Ч. 1 .— 1978 .— 166 с.
3	Ершов, Б.М. Методические разработки к спецпрактикумам "Экспериментальные методы исследования катализа" и "Адсорбция" / Б.М. Ершов ; Ужгородский гос. ун-т. Химический фак. Каф. физической и коллоидной химии .— Ужгород, 1975 .— 68 с.
4	Баталин Г. И. Расчеты по физической химии. (Адсорбция, кинетика, электрохимия): Учебное пособие для студ. химич. факультетов ун-тов / Г.И. Баталин .— Киев: Вища школа, 1977 .— 191 с.:

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

При реализации учебной дисциплины используются элементы электронного обучения и различные дистанционные образовательные технологии, позволяющие обеспечивать опосредованное взаимодействие (на расстоянии) преподавателей и обучающихся, включая инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), проведение вебинаров, видеоконференций (в том числе сприменением сервисов Zoom, Discord и др.), взаимодействие в соцсетях, посредством электронной почты, мессенджеров.

18. Материально-техническое обеспечение дисциплины:

Компьютеризированный комплекс IPC-Compact; IPC-PRO M; анализатор частотного отклика FRA-1; мультитест ИПЛ-1; датчик электрохимический с обновляемой поверхностью.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание	Планируемые результаты обучения	Этапы	
компетенции (или ее	(показатели достижения заданного	формирования	ФОС
части)	уровня освоения компетенции	компетенции	(средства
,	посредством формирования	(разделы (темы)	оценивания)
	знаний, умений, навыков)	дисциплины или	
		модуля и их	
		наименование)	
УК-1	знать: современные	1-4	Практическое
способность к	достижения в области		задание
критическому анализу и	термодинамики и кинетики		
оценке современных	адсорбции		
научных достижений,	уметь: выбирать модельные		
генерированию новых	системы при решении		
идей при решении	исследовательских и		
исследовательских и	практических задач в области		
практических задач, в	адсорбционных явлений		
том числе в	владеть навыками		
междисциплинарных	критического анализа		
областях	современных достижений в		
	области термодинамики и		
	кинетики адсорбции		
УК-4	знать: современные методы и	1-4	Практическое
готовность	технологии научной		задание
использовать	коммуникации на		
современные методы и	государственном и иностранных		
технологии научной	языках		
коммуникации на	уметь: использовать		
государственном и	современные методы и		
иностранном языке	технологии научной		
	коммуникации в научно-		
	исследовательской		
	деятельности		
	владеть навыками		

	напон зороння зорому		
	использования современных		
	методов и технологий научной		
	коммуникации на		
	государственном и иностранных		
OFFICE A	языках		-
ОПК-1	знать: теоретические основы	1-4	Практическое
способность	современных методов		задание
самостоятельно	исследования адсорбционных		
осуществлять научно-	явлений		
исследовательскую	уметь: использовать		
деятельность в	современные методы		
соответствующей	исследования и		
профессиональной	информационные технологии в		
области с	научно-исследовательской		
использованием	деятельности		
современных методов	владеть навыками		
исследования и	интерпретации результатов		
информационно-	физикохимических и		
коммуникационных	электрохимических методов		
технологий	исследования адсорбционных		
	явлений		
ПК-11	знать: современные методы	1-4	Практическое
Способность	электрохимических		задание
самостоятельно	исследований адсорбционных		
осуществлять научно-	явлений		
исследовательскую	уметь: использовать		
деятельность в области	информационные технологии		
электрохимии с	для обработки		
использованием	экспериментальных данных		
современных методов	владеть навыками		
исследования и	интерпретации экспериментов,		
информационно-	направленных на изучение		
коммуникационных	адсорбционных явлений		
технологий			
Промежуточная аттестаці	КИМ		

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене/зачете используются следующие показатели (ЗУНы из 19.1):

- 1) знание учебного материала и владение понятийным аппаратом электрохимии;
- 2) умение связывать теорию электрохимических методов с практикой;
- 3) умение иллюстрировать ответ примерами, фактами, данными научных исследований;
- 4) умение применять основные законы химии при решении конкретных задач;

Для оценивания результатов обучения на зачете используется 2-балльная шкала: «зачтено», «незачтено».

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Глубокие знания по всем разделам курса. Способность находить решения нестандартных научных задач по обсуждаемой проблеме. Понимание сути основных проблем курса.	Базовый	Зачтено
Отрывочные знания материала. Грубые ошибки при решении даже простых задач. Слабое владение математическим аппаратом. Неумение применять полученные знания к анализу конкретных систем		Незачтено

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Комплект КИМ

	УТВЕРЖДАЮ
	Заведующий кафедрой
	физической химии
д.х.н., проф	О.А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

Контрольно-измерительный материал № 1

1.	В	заимодействие	молекул с	: пове	рхностью.	Физическая	и химическая	адсор	обция.
----	---	---------------	-----------	--------	-----------	------------	--------------	-------	--------

2. Кинетика адсорбции и электродесорбции на однородных поверхностях.

Преподаватель к.х.н., доц	E.B. Бобринская
---------------------------	-----------------

УТВЕРЖДАЮ
Заведующий кафедрой
физической химии

д.х.н., проф	О.А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

Контрольно-измерительный материал № 2

метод	 Связь поверхностного натяжения с адсорбцией. изучения адсорбции. 	Измерение пове	ерхностного натяжения и
	2. Кинетические закономерности адсорбции на не	однородных пов	верхностях.
	Преподаватель	к.х.н., доц	Е.В. Бобринская
			УТВЕРЖДАЮ Заведующий кафедрой физической химии
		д.х.н., проф	О.А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

1. Линейная	вольтамперометрия	с учетом	адсорбции	продукта и	ли реагента.

2.	Газоб	bазная	алсо	обиия	молекул	волы.
	1 4500	pasman	идоо	ооции	MOMORYM	воды.

Преподаватель	К.Х.Н., ДОЦ.	E.B. E	Бобринская

УТВЕРЖДАЮ
Заведующий кафедрой
физической химии

д.х.н., проф	О.А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

Контрольно-измерительный материал № 4

1. Линейная Соадсорбция	вольтамперометрия	с учетом	одновременн	юй адсорбции	продуктов	и реагентов.
2. Изотермы	адсорбции Генри и Ла	энгмюра. У	равнение БЭ	Γ.		
		Пр	реподаватель	к.х.н., доц	E.F	 Бобринская
					Заведуюц	ТВЕРЖДАЮ ций кафедрой ческой химии
				д.х.н., проф	0	А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

Контрольно-измерительный материал № 5

1. Влияние природы металла на адсорбцию органических соединений. Обобще Конуэя-Гилеади.	енная изотерма
2. Кластерный подход к описанию адсорбционных систем.	
Преподаватель к.х.н., доц.	Е.В. Бобринска

УТВЕРЖДАЮ Заведующий кафедрой физической химии

д.х.н., проф	О.А. Козадеров

Направление подготовки / специальность 04.06.01 Химия Дисциплина Термодинамика и кинетика адсорбции Форма обучения очное Вид контроля зачет Вид аттестации промежуточная

Контрольно-измерительный материал № 6

- 1. Моделирование заряда поверхности. Частичный перенос заряда при адсорбции.
- 2. Изотермы Фольмера и Фрейндлиха. Влияние природы металла на адсорбцию органических соединений.

Преподаватель	к.х.н., доц.	E.B.	Боб	ринская

19.3.2 Перечень практических заданий:

- -Импеданс в случае адсорбции электрохимически индифферентного вещества. Адсорбционная псевлоемкость.
- -Расчет Гиббсовой адсорбции ПАВ по результатам измерения поверхностного натяжения.
- Получение изотермы адсорбции ПАВ на Рt методом кривых заряжения.
- Получение изотермы адсорбции ПАВ на Pt методом катодно-анодных потенциостатических импульсов.
- Выбор типа адсорбционной изотермы.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме выполнения практико-ориентированных заданий. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний. При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.

При реализации дисциплины с применением дистанционных образовательных технологий оценка за зачет может быть выставлена по результатам текущей аттестации обучающегося в семестре.